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Abstract. Some scheduling problems are considered and optimal solutions of 

these problems are described. Stochastic analogs of scheduling problems are discussed 

and several statements illustrating the usefulness for modeling stochastic parameters  

of symmetrically truncated Gaussian random variables, as well as  their  basic 

properties, are formulated. 
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Introduction. The term “Scheduling Theory” was introduced by Richard Ernest 

Bellman (1920–1984) in 1954. We will mainly follow the terminology of monograph 

of [1].  

We consider the following scheduling model: we have one processor (machine), 

𝑛 (𝑛 > 1) jobs (numerated by numbers 1,2, … , 𝑛), with release times 𝑟1, 𝑟2, … , 𝑟𝑛, 

processing times 𝑝1, 𝑝2, … , 𝑝𝑛 and delivery times 𝑝1, 𝑝2, … , 𝑝𝑛. Job 𝑗 becomes available 

from its release time 𝑟𝑗 and needs continuous processing time 𝑝𝑗 on the machine; once 

completed on the machine, it needs an additional delivery time 𝑞𝑗 for its full completion 
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(the delivery of job 𝑗 is machine-independent and requires no further resource (the job 

is delivered by an independent agent).  

A feasible schedule 𝑆 is a permutation of the numbers 1,2, … , 𝑛. We write 𝑡𝑗(𝑆) 

for the starting time of job 𝑗 and 𝑡𝑗(𝑆) + 𝑝𝑗 = 𝑐𝑗(𝑆) is the completion time of that job 

in schedule 𝑆. The full completion time of job 𝑗 in schedule 𝑆 will be 𝐶𝑗(𝑆) = 𝑐𝑗(𝑆) +

𝑞𝑗.  

We have 𝑡𝑗(𝑆) ≥ 𝑟𝑗 and 𝑡𝑗(𝑆) ≥ 𝑡𝑘(𝑆) + 𝑝𝑘 for any job 𝑘 included earlier in 𝑆. 

The objective is to find a feasible schedule 𝑆 minimizing the maximum job full 

completion time 𝐶𝑚𝑎𝑥(𝑆) = max𝑗≤𝑛 𝐶𝑗(𝑆) and 𝐶𝑜𝑝𝑡 = min𝑆∈Π(𝐽(𝑛)) 𝐶𝑚𝑎𝑥(𝑆) (a 

schedule, assignment with this property is an optimal schedule). The abbreviature 

1|𝑟𝑗 , 𝑞𝑗|𝐶𝑚𝑎𝑥 was introduced in [3].  It is known that this problem is NP-hard (= non-

deterministic polynomial-time hard) [4]. Even in case when the 𝑟 release times consists 

of only two elements, this problem is NP-hard (see E.Chinos and N.Vakhania [2, 

Theorem 1]). Thus, even in this case it is impossible to find the optimal solution in 

polynomial time. An efficient heuristic method that is commonly used for problem 

1|𝑟𝑗 , 𝑞𝑗|𝐶𝑚𝑎𝑥 was proposed long time ago by Jackson (1955) for the version of the 

problem without release times, and then was extended by Schrage (1971) to take job 

release times into account. The extended Jackson's heuristic (J-heuristic, for short) 

iteratively, at each scheduling time 𝑡 (given by job release or completion time), among 

the jobs released by time 𝑡 schedules one with the  largest delivery time.We will use   

for the initial J-schedule, i.e. one obtained by the application of Jackson's heuristic to 

the originally given problem instance, and for an optimal schedule. In case when in the 

1|𝑟𝑗 , 𝑞𝑗|𝐶𝑚𝑎𝑥 problem the r release  times of jobs are  identical, then J-heuristic is 

optimal.  

Before we consider the main problem of this work, the stochastic scheduling 

problem, we will give some auxiliary results from deterministic scheduling problems. 

The first one is the following: 
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Proposition 1. If in the problem 1|𝑟𝑗 , 𝑞𝑗|𝐶𝑚𝑎𝑥, the released times of jobs are 

identical 𝑟1 = 𝑟2 = ⋯ = 𝑟𝑛 = 𝑟 (the problem 1|𝑞𝑗|𝐶𝑚𝑎𝑥), then the J-schedule is 

optimal. 

Developing the stochastic schedule problems, we simulate the job scheduling 

process in computer. To get an effective schedule, it is important that the realizations 

of the stochastic schedules be very close to their mean values. As it is well known, the 

parameters of the scheduling problem (the job processing times, delivery times, etc.) 

are random variables. Since they are the sums of many independent random variables, 

by the central limit theorem, their probability distributions are close to the distributions 

of Gaussian random variables. Indeed, let the random variable  𝜉1 be with mean value 

𝑝 and variance 𝜎2. Let us consider independent copies 𝜉1, 𝜉2, … , 𝜉𝑛 , … and form the 

following random variable 

(𝜉1 + 𝜉2 + ⋯ + 𝜉𝑛 − 𝑛𝑝) (√𝑛𝜎)⁄ ,  1,2, … 

By the central limit theorem this sequence converges in distribution to the 

standard Gaussian random variable with mean 0 and variance 1. 

If for the simulation of the stochastic scheduling process we will use Gaussian 

random variables, it is possible to get a negative value for processing time or delivery 

time. This may happen because a Gaussian random variable can take values that are 

less than a fixed arbitrary small negative number with a positive probability. For this 

reason, in stochastic scheduling problem we consider the symmetrically truncated 

Gaussian random variable instead of Gaussian random variables. Let us illustrate this 

statement by the following  

Example. Let the mean value of the stochastic processing time of the job be  𝑝 =

5 hour. If we simulate this  value by the Gaussian random variable 𝑝 = 5 + 𝛾(0, 𝜎), 

where 𝛾(0, 𝜎) is Gaussian random variable with mean 0 and variance 𝜎2, we can get  

negative values as 𝑃{𝛾(0, 𝜎) < −5} > 0. What happens in case of our notion? Let us 

take the truncation level  𝑀, such that 𝑃{|𝛾(0, 𝜎, 𝑀)| ≤ 𝑀} = 1, where 𝛾(0, 𝜎, 𝑀) is 

symmetrically truncated Gaussian random variable (see definition and properties 

bellow). If we take the number 3 as M, we get positive values for processing time. 



Symmetrically truncated Gaussian random variable. Let 𝛾(𝜎) ≡ 𝛾(𝑜, 𝜎) be  

Gaussian random variable with mean 0 and variance 𝜎2. The distribution function of 

this random variable is 

𝐹𝛾(𝜎)(𝑡) ≡ 𝑃(𝛾(𝜎) ≤ 𝑡) =
1

√2𝜋𝜎
∫ 𝑒

−𝑥2

2𝜎2
𝑡

−∞
𝑑𝑥. 

For any positive numbers 𝑀 and 𝜎, denote by Γ(𝜎, 𝑀) the random variable  with 

following distribution function 

𝐹𝜎,𝑀 ≡ 𝐹Γ(𝜎,𝑀)(𝑡) ≡ 𝑃(Γ(𝜎, 𝑀) ≤ 𝑡) =
1

√2𝜋𝜎
𝜌 ∫ 𝑒

−𝑥2

2𝜎2

𝑡

−𝑀

𝑑𝑥, −𝑀 ≤ 𝑡 ≤ 𝑀, 

where 

𝜌 =
1

𝐹𝛾(𝜎)(𝑀)−𝐹𝛾(𝜎)(−𝑀)
 = 

√2𝜋𝜎

∫ 𝑒
−𝑥2

2𝜎2𝑀

−𝑀
𝑑𝑥

 . 

The distribution density of the random variable Γ(𝜎, 𝑀) is 

𝑓𝜎,𝑀(𝑥) ≡ 𝑓Γ(𝜎,𝑀)(𝑥) =
1

√2𝜋𝜎
𝜌𝑒

−𝑥2

2𝜎2 = 

=
1

√2𝜋𝜎
𝑒

−𝑥2

2𝜎2 √2𝜋𝜎 (∫ 𝑒
−𝑥2

2𝜎2
𝑀

−𝑀
𝑑𝑥)

−1

=
𝑒

−𝑥2

2𝜎2

∫ 𝑒
−𝑦

2𝜎2𝑀

−𝑀
𝑑𝑦

, −𝑀 ≤ 𝑥 ≤ 𝑀. 

Such random variable we call a symmetrically truncated Gaussian random 

variable with bound (or level)  𝑀 and parameter 𝜎. 

Below we provide some properties of this random variable. 

Proposition 2. For any fixed 𝑀, the sequence of densities of symmetrically 

truncated   Gaussian random variables with parameters 𝜎𝑛tends to the density of 

uniformly distributed random variable  when 𝜎𝑛 tends to infinity 

lim
𝜎𝑛→∞

𝑓𝜎𝑛,𝑀(𝑥) → 𝑈[−𝑀,𝑀](𝑥), 

uniformly in 𝑥 on the segment [– 𝑀, 𝑀], where 𝑈[−𝑀,𝑀](𝑥) is the density of uniformly 

distributed random variable.   

Proposition 3. Let 𝛾1(𝜎, 𝑀) and 𝛾2(𝜎, 𝑀) be independent symmetrically 

truncated Gaussian random variables, 𝜉1 and 𝜉2 be independent Gaussian random 

variables with mean 0 and variance 𝜎2; denote 𝑆 = 𝜉1 + 𝜉2. If 𝑀 ≥ 𝜎, then  



𝐸(𝛾1(𝜎, 𝑀) + 𝛾2(𝜎, 𝑀))
2

≤  𝐸(𝑆(√2𝜎, 2𝑀)
2
. 

Analogously, the following general statement holds: 

Proposition 4. Let 𝛾1(𝜎, 𝑀), 𝛾2(𝜎, 𝑀), … , γn(σ, 𝑀) be independent 

symmetrically truncated Gaussian random variables, 𝜉1, 𝜉2, … , 𝜉𝑛 be independent 

Gaussian random variables with mean 0 and variance 𝜎2; denote 𝑆𝑛 ≡ 𝜉1 + 𝜉2 +

⋯ , 𝜉𝑛. If  
𝑀

𝜎
> √

ln 𝑛

𝑛−1
  then  

𝐸 (𝛾1(𝜎, 𝑀) + 𝛾2(𝜎, 𝑀) + ⋯ + γn(σ, 𝑀))2 ≤ 𝐸 (𝑆𝑛(√𝑛𝜎, 𝑛𝑀))
2
. 

Proposition 5. Let 0 < 𝜎 < 𝜃. If −𝑀 < 𝑥 < −𝑥0 or 𝑀 > 𝑥 > 𝑥0, then 𝑓𝜎,𝑀 <

𝑓𝜃,𝑀 and if −𝑀 < −𝑥0 < 𝑥 < 𝑥0 < 𝑀, then 𝑓𝜎,𝑀 > 𝑓𝜃,𝑀. If −𝑥0 < −𝑀 < 𝑥 < 𝑀 <

𝑥0, then 𝑓𝜎,𝑀 > 𝑓𝜃,𝑀. 

Let in the Borel 𝜎-algebra of 𝑅1 we have the probability distribution 𝑃𝛾(𝜎) of the 

Gaussian random variable 𝛾(𝜎). For any fixed 𝑀 > 0, let us consider the Borel 𝜎-

algebra 𝐵𝑀 of the segment [−𝑀, 𝑀]. The conditional expectation of the indicator of 

the measurable subset  A of  𝑅1 with respect to the 𝜎-algebra 𝐵𝑀 equals 

𝐸(𝐼𝐴|𝐵𝑀) = 𝑃𝛾(𝜎)(𝐴|𝐵𝑀) =
𝑃𝛾(𝜎)(𝐴∩[−𝑀,𝑀])

𝑃𝛾(𝜎)([−𝑀,𝑀])
= 𝑃𝛾(𝜎),𝑀(𝐴). 

For any arbitrary probability space (Ω, 𝐵, 𝑃) it is meaningful to define the 

conditional expectation 𝐸(𝜉|𝐵𝐸) for any measurable set 𝐸 with 𝑃(𝐸) > 0 where 𝐵𝐸 is 

a 𝜎-algebra of 𝐸 induced by 𝐵 and for any random variable 𝜉 defined on (Ω, 𝐵, 𝑃). 

𝐸(𝜉|𝐵𝐸) is 𝐵𝐸-measurable random variable, such that ∫ 𝐸(𝜉|𝐵𝐸)
𝐴

𝑑𝑃 =
∫ 𝜉

𝐴
𝑑𝑃

𝑃(𝐸)
. 

Let us consider the Gaussian random variable 𝛾(𝜎), any positive number 𝑀 and 

the measurable set 𝐸 = [|𝛾(𝜎)| ≤ 𝑀]. Denote by 𝐵𝐸 the𝜎-algebra induced from 𝐵, to 

the set 𝐸. 

Proposition 6. Let 𝛾(𝜎) be Gaussian random variable with mean 0 and variance 

𝜎2, 𝑀 be any positive number. The corresponding symmetrically truncated Gaussian 

random variable 𝛾(𝜎, 𝑀) can be obtained  as a conditional expectation of 𝛾(𝜎) by the 

Borel 𝜎-algebra𝐵𝐸 on the set 𝐸 = [|𝛾(𝜎)| ≤ 𝑀]. 



Stochastic scheduling process. Let us consider the stochastic scheduling process 

when we have jobs 𝑗1, 𝑗2, … , 𝑗𝑛, with released times 𝑟1 = 𝑟2 = ⋯ = 𝑟𝑛 = 0, processing 

times are independent random variables with mean 𝑝𝑖 added symmetrically truncated 

Gaussian random variable 𝛾𝑖(𝜎, 𝑀), 𝑖 = 1,2, … , 𝑛. Delivery times also are independent 

to each other and independent to processing  times random variables with mean 𝑞𝑖 

added symmetrically truncated Gaussian random variable 𝛾𝑖(𝜃, 𝐿), 𝑖 = 1,2, … , 𝑛. 

A feasible schedule 𝑆 is a sequence of ordering jobs 𝑗1(𝑆), 𝑗2(𝑆), … , 𝑗𝑛(𝑆). The 

full completion time of job 𝑗 in schedule 𝑆, 𝐶𝑗(𝑆) = 𝑝1(𝑆) + 𝛾1(𝑆)(𝜎, 𝑀) + ⋯ +

 𝑝𝑗(𝑆) + 𝛾𝑗(𝜎, 𝑀) + 𝑞𝑗(𝑆) + 𝛾𝑗(𝜃, 𝐿). The objective is to find a feasible schedule 𝑆 

minimizing the maximum job full completion time 𝐶𝑚𝑎𝑥(𝑆) = max𝑗≤𝑛𝐸𝐶𝑗(𝑆) and 

𝐶𝑜𝑝𝑡 = min𝑆∈Π(𝐽(𝑛)) 𝐶𝑚𝑎𝑥(𝑆) = max𝑗≤𝑛𝐸𝐶𝑗(𝑆). 

Theorem 1. In the stochastic job scheduling problem with released times 𝑟1 =

𝑟2 = ⋯ = 𝑟𝑛 = 0, stochastic processing times with mean value 𝑝𝑖 plus independent 

symmetrically truncated Gaussian random variables with parameters 𝜎 and 𝑀 and  

stochastic delivery times with mean value 𝑞𝑖 plus independent, symmetrically 

truncated Gaussian random variables with parameters 𝜃 and 𝐿, the optimal schedule in 

an average sense is the J-schedule (𝑞1 ≥ 𝑞2 ≥ ⋯ ≥ 𝑞𝑛). 

Thus, the optimal schedule in an average sense is the J-schedule. It is interesting 

what difference is with optimal schedule in an average sense and real optimal schedule. 

At first, let us consider the case, when the delivery times are deterministic (case 

a). 

Theorem 2. In the stochastic job scheduling problem with released times 𝑟1 =

𝑟2 = ⋯ = 𝑟𝑛 = 0, stochastic processing times with mean value 𝑝𝑖 plus independent, 

symmetrically truncated Gaussian random variables with parameters 𝜎 and 𝑀 and with 

deterministic delivery times 𝑞𝑖, the J-schedule is optimal and quantity of difference 

with average  optimal full processing time 𝐶𝑜𝑝𝑡 and real optimal full processing time 

𝐶𝑜𝑝𝑡
𝑟  is 

|𝐶𝑜𝑝𝑡
𝑟 − 𝐶𝑜𝑝𝑡| ≤ |𝛾1(𝜎, 𝑀) + 𝛾2(𝜎, 𝑀) + ⋯ + 𝛾𝑛(𝜎, 𝑀)|. 



Let us consider now the case when the delivery times are mean value plus 

symmetrically truncated Gaussian random variables and processing times are 

deterministic (case b). 

Theorem 3. In the stochastic job scheduling problem with released times 𝑟1 =

𝑟2 = ⋯ = 𝑟𝑛 = 0, deterministic processing times and  stochastic delivery times with 

mean value 𝑞𝑖 plus independent, symmetrically truncated Gaussian random variables 

with parameters 𝜃 and 𝐿 the J-schedule is not, in general, optimal and quantity of 

difference with average optimal full processing time 𝐶𝑜𝑝𝑡 and real optimal full 

processing time 𝐶𝑜𝑝𝑡
𝑟  of the optimal scheduling 𝐶𝑜𝑝𝑡

𝑟  is 

|𝐶𝑜𝑝𝑡
𝑟 − 𝐶σ| ≤ max𝑖≤𝑛|γji

(𝜃, 𝐿)| ≤ 𝐿. 

Let us consider now the case when job processing times and delivery times are 

random variables (case c). 

Theorem 4. In the stochastic job scheduling problem with released times 𝑟1 =

𝑟2 = ⋯ = 𝑟𝑛 = 0, stochastic processing times with mean value 𝑝𝑖 plus symmetrically 

truncated  independent Gaussian random variables with parameters 𝜎 and 𝑀 and  

stochastic delivery times with mean value 𝑞𝑖 plus independent, symmetrically 

truncated Gaussian random variables with parameters 𝜃 and 𝐿 the J-schedule is not, in 

general, optimal and quantity of difference with optimal full processing time 𝐶𝑜𝑝𝑡 and 

real optimal full processing time 𝐶𝑜𝑝𝑡
𝑟  of optimal scheduling is 

|𝐶𝑜𝑝𝑡
𝑟 − 𝐶σ| ≤ max𝑖≤𝑛|γji

(𝜃, 𝐿)| ≤ 𝐿. 
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